
International Journal of Theoretical PhysicT. VoL 21, No. 2, 1982 

Second-Order Tangent Structures 

C. T. J. Dodson 

Department of Mathematics. Universi O, of Lancaster, England 

and M. S. Radivoiovici 

Department of Mathematics, University of Bucharest 

Received April 21, 1981 

Second-order differential processes have special significance for physics. Two 
reasonable generalizations of the procedure for constructing a tangent bundle 
over a smooth n-manifold M yield different second-order structures, each 
projecting onto the standard first-order structure TM. One approach, based on 
the work of Ehresmann generalizes the notion of a tangent vector as a derivation. 
The other, based on the work of Yano and Ishihara generalizes the notion of a 
tangent vector as the velocity of a curve. The former leads to J2M, the 2-jet 
vector bundle consisting of second-order derivations, the latter leads to T~2)M, 
the bundle of curves agreeing up to acceleration. Both project naturally onto TM 
because the 1-jet bundle of first-order derivations and the bundle of curves 
agreeing up to velocity are isomorphs of TM. Both generalizations admit 
extension to higher orders but the second-order case illustrates their differences 
and is important in applications. It is always true that J2M is a vector bundle: 
but T~2~M is a vector bundle if and only if M has a linear connection and then 
TI2~M :-TM@TM with fiber R-'", whereas J2M always has fiber R ~': +3.~/2 
We compare these constructions and give some results about TC2)M and the 
principal bundle L~Z~M to which it is associated. In a space-time there is a 
distinguished linear connection induced by the Lorentz metric, so both second- 
order tangent structures are available and the reduction of J~-M to T~-~M is a 
considerable simplification in the case n = 4. We show also that both second-order 
bundles have applications to the study of space-time boundaries. 

1. S E C O N D - O R D E R  T A N G E N T  B U N D L E S  

W e  g i v e  a s u m m a r y  o f  t h e  c o n s t r u c t i o n s  in  A m b r o s e  e t  al.  ( 1960 )  f o r  

J Z M  a n d  in  Y a n o  a n d  I s h i h a r a  ( 1973 )  f o r  T(2)M (cf .  a l s o  D o d s o n  a n d  

R a d i v o i o v i c i ,  1980).  
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Take any ,xE M. The k - j e t  space, J,kM, 
subspace of real-valued linear maps given by 

where 

Dodson and Radivoiovici 

to M at x is the vector 

J ~ M =  { c ~  L ( F , ; R ) I  F~ t o ( y ~  

F~ = { C~ N~ ~ R  ] N ,. some open set about x} 

F.," = ( f r  F,] f i s  constant on some open set about x} 

F~ ~  { f e  E~I f ( x ) = 0 }  

( 8 ' )k +1 _- { finite sums of products of (k + 1) elements from CP }.  

It follows immediately that J,~M is isomorphic to 77,.M, the usual tangent 
space to M at x. Also, just as any chart (U, q)) with x ~  U determines a frame 
(8,) for T~ M so also it determines a frame (~i, ~,  = 8j,) for J,2M. The vector 
spaces J~M and J,.~M collect into vector bundles j e M  and J IM =-- TM (cf. 
Palais, 1968). 

Next we construct T~e)M from classes of curves in 

C x = {C~ ( -  e, e)- ,  M[ f(O)= x, some real e>0} 

Such curves have first and second tangents, that is velocity and acceleranon 
vectors, given by 

/:  ( - e , e ) ~  TM: t "-,D,/(1) 

f: ( -- e, e ) ~  TTM: t "--*D,/(I) 

We introduce two equivalence relations - ~  and ~,. on (7',.: 

f ~  .,.h = f(O) =/4(0) 

f ~,.h ,==, riO) =/4(0) and /{0) =/~(0} 

Then we can obtain vector spaces 

G / ~ x - - T ~ M - - R  ~ 
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However, whereas we obtain from the former a vector bundle T{~}M 
naturally isomorphic to TM,  it turns out that we can provide a vector 
bundle structure for {C~/~ , I  x ~  M) if and only if M has a linear connec- 
tion (Dodson and Radivoiovici, 1980). In the latter case the bundle so 
formed is T {2} M = T M ~ T M  and a chart (U, qp) determines a frame from 
(~,@~i) for T~2}M if it determines the frame (~,) for TxM. In the work of 
Yano and Ishihara (1968, 1973) local properties were studied but the essen- 
tial role of the connection was apparently not recognized (cf. Dodson and 
Radivoiovici, 1980; Radivoiovici, 1979). 

We note that the manifolds that admit linear connections are precisely 
the paracompact ones (cf. Dodson, 1980, p. 147) and manifolds with 
connection form a full subcategory Man~7, of the category Man consisting 
of smooth manifolds and smooth maps. The tangent bundle functor, T: 
M a n -  Vbun, induces functoriality of j 2  by putting j2/~(O~)= Dtt(O, ) in 

j2:  M a n - V b u n :  M j 2 M  
Jll ~ ~J2~1 
M '  J2M' 

Similarly we obtain a functor 

T{2}: Man~--+Vbun: (M,~7) T{2)M 

( M' ,  V ') T{2)M ' 

where 

D2~ = F -~ o ( DI~@D# ) o F'  

is well defined by the isomorphisms induced by connections (Dodson and 
Radivoiovici, 1980), 

F: T M ~ T M  =-- T{2}M, F': T M ' @ T M  ' =  T(2}M ' 

2. DISSECTION BY CONNECTION 

One of the ways to view a linear connection V is as a smooth splitting 
of TLM,  the tangent bundle to the frame bundle, into horizontal and 
vertical components. This splitting induces corresponding splitting in j 2 M  

and T{2}M. 
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Take a chart (U, cp) on M and the induced frame field (0,); then V 
appears locally in the form of a covariant derivation on vector fields given 
on generators by 

v 0 a j - -  

The splitting of j2M, called a dissection in Ambrose et al. (1960), appears 
locally in the form 

j2U ~ JIUOJ V U 

and the members  of J v U are called pure second-order tangent vectors 
relative to x7. In fact we can characterize J v U as the kernel of a linear map 

~ ~ a i 
X: J2U~ JIM: i O 0 ~ ~Taaj 

Another characterization can be given by observing that at any x C M a 
complement  of J,!M in J i M  is fixed by the spray of geodesics emanating 
from x. That was shown in Ambrose et al. (1960) and it was also shown that 
sprays and dissections are in one-to-one correspondence through the ability 
of either to determine a linear connection. Two connections, V and V' ,  
generate the same geodesics, and hence the same sprays, if and only if their 
difference transformation is antisymmetric. That is, if and only if 

( r u e  LM )(VX, YE T.LM ) 

- a ( r ) 0 ( x )  

where 8 = ~0 - ~o' is the difference between the two connection forms and 0 
is the canonical 1-form. This result follows from the structure equations 
(Ambrose, et al., 1960). 

In a similar way we can represent the splitting of T(2)M, which needs a 
connection to be a vector bundle at all, as a dissection given locally by (cf. 
Dodson and Radivoiovici, 1980). 

T(2)U ~ T U ~ T U  

[ f ]~, "--*/(0) (9 V /  
/(o) 
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WE can 
results. 

Theorem 1. Each spray on M determines a unique linear connec- 
tion (with any particular choice of torsion tensor) having geodesic 
spray the given spray by Ambrose et al. (1960), and hence it 
determines also a unique vector bundle structure on the accelera- 
tion bundle T~21M by Dodson and Radivoiovici (1980). �9 

see something more of the role of the connection in the following 

Theorem 2. (i) There is a subcategory ManA of Man~7 consisting 
of the same objects as M a n y  but with morphisms 

/~ : ( M, V ) ~ (  M', V')  in Man V 

such that A~t is in Vbun, where 

/ ~ :  V <-~'j'/~ T <2'T': [S]~_, . . - [ / , o f ] ~ , , ,  

(ii) A/~ = DC=)/~ if and only if for all smooth curves S: ( -  e, e) 
M 

# ~ ~ 

Dp,( Vko, i )(0) = V D,~r S<o)) D#x ( S )(0) 

(iii) Tr = Tr in Vbun if and only if there are isomor- 
phisms A, B: TM =-- TM'  in Vbun with 

B(V/r  V '  " A" 0 AS(0) S( )  

for all smooth curves f: ( -  e, e) ~ M. 

Proof (i) This is a matter of checking the composition rule. 
(ii) This is precisely the condition for A/~ to commute with the 

canonical projections from T~2)M and T~2)M ' onto M and M'. 
(iii) This follows from (ii) and the observation that the given 

equation implies commutativity with projections. �9 

3. SECOND-ORDER PRINCIPAL BUNDLES 

The tangent bundle T M  is an associated bundle to the principal bundle 
L M  with structure group Gl(n) : Gl(n; fl~), 

TM=---( L M  •  
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Similarly. we obtain (Dodson and Radivoiovici, 1980) a principal bundle 
LI2)M with 

T~ZlM :--(L~2)M x R z " ) / G I ( 2 n )  (given ~ in LM) 

and LM is isomorphic to a subbundle of L~2~M. 
Working with k-jets, the principal bundle to which JkM is associated is 

the Ehresmann (1953) bundle of k-frames PkM with structure group Gk(n) 
(cf. Kobayashi, 1972, p. 139). In particular, since JIM -- TM we find that 
also PLM =~ LM. We are only interested in the case k =2  and it is helpful to 
see p2M constructed as follows. 

Take any x E M and define on the set 

ExM : {local diffeos/:  ( -  e, e ) " -  M [ / ( 0 ) - -  x, some real e>0} 

an equivalence relation ( ~ )  by 

~ 0 , f =  0,h and a , / f =  a~jh, at x for all i, j 

f(Ji~)h [wi th  respect to the frame field (a,) of any chart. 

Then we take the set of equivalence classes 

p ,2m:  E,.M/jI~ = { [ f l a i l  f ~  E.,.M} 

and in fact it is usual to write I l i a  asj ,2(f) .  
We construct G2(n) from similar classes, after replacing M by a 

neighborhood of the origin in R": 

G2(n)=( j~(o)[o:  ( - e ,  - - ( - e  ,e')~,somereale, e'>O} 

Then there is an obvious group structure given by 

jo(Oo ) 

and the requisite free action on the right of p2M = U xc MP~ M is 

P2M X GZ( n ) - P2M: ( j . 2 ( f ) ,  jo (o ) )  .---,j.~( f oo ) 

Here we have followed Kobayashi (1961, 1972) but note that Hennig (1978) 
bases his representation of P 2M on classes of maps from M into R", that is 
essentially a dual process to the one given above. Another view of p2M is 
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also useful; consider the following. Each j i~( f )~  p2M determines, with 
respect to chart (U, cp), a quadratic function f~ of coordinates (x ~) by 

! r i  l k im'(-e,e)"~ep(U):(x i) (fi+ij'xX+2JjkXX ) 

where ( S i) = qp o fo r i, with e small enough for imf C_ U, 

i ~ i 0 i 

The coefficients in the quadratic f~ serve as coordinates and in a similar way 
we have coordinates on GZ(n), such that it appears as ordered arrays of real 
numbers. Namely, 

( , )  i , i )  G2(n )=  (%i, Ojk [detoj v~O, Ojk=%j 

and its action on P:M is given by 

(fi, fj,fj~.)X(Oj! Ojik)=( i , m i m i r s ' f ,f,,,oj ,f,,ojk +s %) 

Of course, if this change of 2-frame corresponds to a change of chart about 
some point x r U then oj and Ojk are just 

ax' a2x i 
and 

where (x i) and (yi)  are the alternative coordinates about x. 
We return to L~2~M, which has a unique connection 0 from the 

connection ~7 in LM, as we have discussed elsewhere. 

Theorem 3. L~2)M is parallelizable. 

Proof. This parallels the proof that LM is parallelizable if it admits a 
connection and we give an outline only. 

Since Vbun admits pullbacks we can construct H~)*M, the pullback of 
TM over Lr 

TLI2)M ~ DyU~ I 

" ~  ~ Hf '"  TM TM 

II l-It fir 
~ L ~ 2 ~ M  M 

n ~  
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Then by the universal property of pullbacks, the canonical projections 
DH~/! } and H ~  determine a unique vector bundle morphism H, and also 
another. K, which gives linear isomorphisms on fibers. Specifically, we have 
a trivial bundle 

1-I~}*TM : {(u,  v ) E  L(2}M X TM I -- ;  ~H{2}tu): HT- (v)}  

Just as the connection Xv in L M  splits TLM so ~ in L(2}M splits each 
T,,L(2}M into H,,•G,,, consisting of ~7 horizontal and vertical members, so 
giving an exact sequence of vector spaces 

0 ~ G,, ~ H,,@ G,, ~ H,, ~ 0 

and hence an exact sequence of vector bundles 

0 ~ k e r D H ~ � 9 1  ~ TL{2)M ~H H~}.TM ~ 0  

Now, k e r D H ~  ) is isomorphic to L{2}M X G~(2n) and therefore it is trivial 
and we can show that TL{2)M is the Whitney sum H~!)*TM@kerDH~ ). For, 
the '~-horizontal lifts (Dodson and Radivoiovici, 1980) yield a unique right 
inverse for H. Hence, TL{2)M is itself trivial and L(2)M is parallelizable. �9 

Corollao'. (i) L(2}M is orientable, metrizable, and admits a fiat 
connection in LL{Z)M. 

(ii) L{2)M admits a Riemannian structure with which the paral- 
lelization connection is compatible. 

(iii) L{2}M --= L{2)M ' ~  T{2)M'~ T(2}M ' 

Proof. These are standard deductions. �9 
In the presence of a connection we may suppose that P2M can itself be 

simplified. This is indeed the case and Kobayashi (1972) shows that a 
torsion-free linear connection V on M corresponds precisely to a section 

X7: M--* p 2 M / G ~ ( n )  

which is intuitively reasonable because such connections correspond to 
dissections of j2M.  Furthermore, if (0 I, 02) is the canonical l-form on p2M 
and 

-y: p l M ~  p2M 
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is the injection arising from the section V then 

0 = Dy(O I ) is the canonical 1-form on PIM = L M  

w = Dy(02) is the connection form corresponding to ~7. 
Again there is a parallel situation for L<2)M which contains an iso- 

morph of L M  by means of 

and has a connection ~' induced by V. The corresponding canonical and 
connection forms 0 and ~5 relate to those on L M  by 

O o ( D l ) = ( I , I ) o O  and C0,Dl=~o~o 

where ff is the Lie algebra injection corresponding to l. 

4. SPACE-TIME BOUNDARIES 

A space-time (M, g) is a connected, noncompact, Hausdorff, inextensi- 
ble smooth 4-manifold with a Lorentz structure. Hence, a space-time always 
has a unique torsion-free connection V in LM, reducible to a connection in 
the pseudoorthonormal bundle OM with structure group O(1,3). The central 
role of V in relativity was extended by Schmidt (1971) to the characteriza- 
tion of singularities by incorporating them in the b-boundary OM of 
space-time. Details of this and subsequent modifications are given in 
Dodson (1978). We have shown (Dodson and Radivoiovici, 1981) that the 
connection V in L(2)M induced by V in L M  allows another view of 
singularities by means of the /~-boundary 0M, which contains OM. The 
intrinsic dependence of ~M on the acceleration of inextensible curves to 
which it supplies end points is attractive physically. For, the acceleration 
concerned is precisely the impediment to the curve developing as a geodesic; 
and for a physical particle it measures the external forces it experiences, that 
is its lack of freedom. 

In the presence of a parallelization, that is a section of LM, an 
analytically simpler boundary for (M, g) can be constructed (Dodson and 
Sulley, 1980). Again, a similar construction can be applied to a section of 
L~Z)M. However, in either case some physical justification is required before 
invoking the extra structure that is needed. In the presence of V in L M  we 
have seen that L~2)M is naturally parallelizable through the existence of a 
section of LL(2)M because TL(2)M is trivial. For similar reasons L M  is itself 
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parallelizable without assuming extra structure for (M,g). Indeed the 
conformal structure (Kobayashi, 1972) induced by the given metric g was 
used by Schmidt (1974) to obtain a Riemannian structure on LLM from a 
parallelization and hence by projection he obtained a natural conformal 
boundary for a space-time. This procedure can be applied to obtain a 
Riemannian structure on LL~2~M and hence to obtain another conformal 
boundary. 

For most realistic space-times it is quite likely that M is indeed 
parallelizable (cf. Dodson, 1980) but there is not a natural way to choose a 
section of LM to give a Riemannian structure. Similarly there may well exist 
sections of p2M but none is distinguished physically. On the other hand, the 
Levi-Civith connection does determine a section of P~-M/G~(n), or its 
reduction corresponding to the replacement throughout of the general linear 
group by the Lorentz group. Hence we obtain a frame field for pure 
second-order tangent vectors which can be applied to curves, thus yielding 
another process for supplying acceleration-sensitive end points and hence 
another boundary for (M, g). 
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